If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(16x)^2-18x-55=0
a = 16; b = -18; c = -55;
Δ = b2-4ac
Δ = -182-4·16·(-55)
Δ = 3844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3844}=62$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-62}{2*16}=\frac{-44}{32} =-1+3/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+62}{2*16}=\frac{80}{32} =2+1/2 $
| 5(3+3x)=45 | | -13x-13=-+x23 | | 112=9x+8x+10 | | 3(x-2)+2(x+1)=-5(x-3) | | 6x+6=(x+6) | | -9=m/2-2 | | 112=8x+110+9x | | 3x^{2}-12x+18=18 | | 2x+8=-3x-37 | | 112=8x+100+9x | | -3x^{2}-12x+18=18 | | 2+4.3u=6.3 | | 3(4x-1)=12(4x+2) | | 16x^2-18x-55=0 | | 112=9x+8x+110 | | c+124.000=250.000 | | 〖16x〗^2-18x-55=0 | | 5(1+4x)-5=180 | | 51=2x-33 | | 15=14+2x | | 17x-6=101+5x+1 | | t +10 = 12 | | 15m≤45=30 | | x^2-16x=-50 | | -20a=60 | | 6/5=d÷5/4 | | 34=10+6x | | -4=-7+k | | x+250.000=124.000 | | X³+9x+14=0 | | 3x-5=2(3x+5) | | 6x+20=54+3x-1 |